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INTRODUCTION



THE CLASSIFICATION THEOREM

Theorem (“Many hands”)
C∗-algebras that are unital, simple, separable, nuclear,
regular, and satisfy the UCT, are classified by K-theory and
traces.

• C∗-analog of the classification of injective von Neumann
factors: Murray-von Neumann, Connes, Haagerup.

• No traces: Kirchberg-Phillips (1990s).
• We focus only on the case T(A) 6= ∅.
• Classifying invariant:

Ell(A) :=
(
K0(A), [1A]0, K1(A), T(A), T(A)×K0(A) → R

)
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AN EXAMPLE: C(X)⋊ G

Setup: G, a countable discrete group, acting on X, a compact
metric space.
When does C(X)⋊ G satisfy the hypotheses?

C(X)⋊ G is. . .

• . . .unital, since X is compact;
• . . . simple, if the action is free and minimal;
• . . . separable, since G is countable and X is metrizable;
• . . .nuclear, if G is amenable;
• . . . in the UCT class, if G is amenable;
• . . . regular, if X is finite dimensional and G is f.g. nilpotent.
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REGULARITY

Finite nuclear dimension (Winter-Zacharias)

• dimnuc A: noncommutative analog of covering dimension
• dimnuc C(X) = dim X
• range of Ell(−) exhausted by C∗-algebras with dimnuc < ∞

Z-stability: A ∼= A⊗Z

• Jiang-Su algebra Z : ∞-dim’l analog of C.
• Z ∼KK C; has unique trace.
• Ell(A) = Ell(A⊗Z)
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Theorem (Castillejos-Evington-Tikuisis-White-Winter)
For A is a unital, simple, separable, nuclear, nonelementary,

dimnuc A < ∞ ⇔ A ∼= A⊗Z.

Comments:

• “⇒” is due to Winter
• Can remove “unital” from statement: Castillejos-Evington,
Tikuisis.

• Conjecturally equivalent to a third condition:
strict comparison. (True under mild trace hypotheses.)

• Proof developed important technique for handling
complicated trace spaces.
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THE ORIGINAL ROAD TO CLASSIFICATION (∼2017)

Impossible to summarize decades of work in a slide.
Some recent components:

Classification of “model” algebras

• Gong-Lin-Niu ’15: classified C∗-algebras with a certain
internal tracial approximation structure.

• The class exhausts range of Ell(−).

Realizing the approximations

• Elliott-Gong-Lin-Niu ’15: abstract conditions on a
C∗-algebra ⇒ concrete tracial approximations of GLN.

• Tikuisis-White-Winter ’17: the abstract conditions are the
ones stated in the classification theorem.
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A DIFFERENT APPROACH

We develop an alternate route to classification: beginning with
von Neumann algebraic techniques inspired by work of Connes
and Haagerup, we extend the KK-theoretic techniques recently
developed by Schafhauser to prove classification theorems in
an abstract setting.

We will (mostly) ignore the difficulties that arise from
non-separability or the lack of a unit.
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CLASSIFYING MORPHISMS & ALGEBRAS



EXISTENCE AND UNIQUENESS INTO II1 FACTORS

Theorem (Connes ’76)
Injective von Neumann Algebras are AFD.

Corollary
A: nuclear C∗-algebra; M: II1 factor.

1. (existence)
τ ∈ T(A) =⇒ ∃ ∗-hom φ : A → M s.t. τM ◦ φ = τ.

2. (uniqueness)
φ,ψ : A → M ∗-hom’s s.t. τM ◦ φ = τM ◦ ψ
=⇒ φ ≈u ψ (in ‖ · ‖2)
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CLASSIFICATION OF MORPHISMS

Rough scheme
Produce invariant inv(−) s.t.
(with abstract hypotheses on A,B):

• (existence)
α : inv(A) → inv(B) =⇒ ∃ φ : A → B s.t. inv(φ) = α;

• (uniqueness)
φ,ψ : A → B and inv(φ) = inv(φ) =⇒ φ ≈u ψ.

Intertwining: inv(A) ∼= inv(B) =⇒ A ∼= B.

inv(−) will be more complicated than Ell(−).

Also want:
Ell(A) ∼= Ell(B) yields inv(A) ∼= inv(B).
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ONE INGREDIENT: TOTAL K-THEORY

Definition
K(A) =

⊕∞
n=0 K0(A;Z/nZ)⊕ K1(A;Z/nZ)

Can think of Ki(A;Z/nZ) as Ki(A⊗On+1).

Slogan
Can check “closeness” of KK(φ) and KK(ψ) by checking that
K(φ) and K(ψ) agree on large finite subsets of K(A).
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ANOTHER INGREDIENT OF INV(—): “ALGEBRAIC” K1

Thomsen-Nielsen (early 90s): different proof of Elliott’s
classification of simple unital AT algebras. Need refined inv.

Definition

Kalg1 (A) := U∞(A)/CU∞(A)

CU∞(A) is the closure of the commutator subgroup of U∞(A).

Kalg1 (A) came up in Thomsen’s work on the role of the
relationship between and K-theory and traces in classification
theory.

Has seen lots of use in classification (e.g. in GLN).

10



ANOTHER INGREDIENT OF INV(—): “ALGEBRAIC” K1

Thomsen-Nielsen (early 90s): different proof of Elliott’s
classification of simple unital AT algebras. Need refined inv.

Definition

Kalg1 (A) := U∞(A)/CU∞(A)

CU∞(A) is the closure of the commutator subgroup of U∞(A).

Kalg1 (A) came up in Thomsen’s work on the role of the
relationship between and K-theory and traces in classification
theory.

Has seen lots of use in classification (e.g. in GLN).

10



ANOTHER INGREDIENT OF INV(—): “ALGEBRAIC” K1

Thomsen-Nielsen (early 90s): different proof of Elliott’s
classification of simple unital AT algebras. Need refined inv.

Definition

Kalg1 (A) := U∞(A)/CU∞(A)

CU∞(A) is the closure of the commutator subgroup of U∞(A).

Kalg1 (A) came up in Thomsen’s work on the role of the
relationship between and K-theory and traces in classification
theory.

Has seen lots of use in classification (e.g. in GLN).

10



THE INVARIANT

Definition

inv(A) :=
(
K(A), Kalg1 (A), Aff T(A)

)

A compatible triple (α,β, γ) : inv(A) → inv(E) consists of

α : K(A) → K(E), β : Kalg1 (A) → Kalg1 (E), γ : Aff T(A) → Aff T(E)

such that

K0(A) Aff T(A) Kalg1 (A) K1(A)

K0(E) Aff T(E) Kalg1 (E) K1(E)

ρA

α0

ThA

γ β α1

ρE ThE

commutes.

(α,β, γ) is faithful and amenable if γ∗
(
T(E)

)
⊆ T(A) consists of

faithful amenable traces.
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CLASSIFICATION OF MORPHISMS

Theorem (C-Gabe-Schafhauser-Tikuisis-White)

• A : sep., exact, UCT
• B : sep., Z-stable, strict comparison w.r.t. T(B), T(B) 6= ∅

& compact
• (α,β, γ) : inv(A) → inv(B) : compatible triple that is faithful

and amenable

Then:

• ∃ full † nuclear *-hom. φ : A → B s.t. inv(φ) = (α,β, γ);
• this φ is unique up to approx. unitary equivalence.

† : φ(a) generates B as an ideal ∀a 6= 0. Wrinkle with units.
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CLASSIFYING ALGEBRAS

The (unital) C∗-algebras in{
alg’s satisfying
domain hyp.

}⋂{
alg’s satisfying
target hyp.

}⋂{
A : idA satisfies
morphism hyp.

}
are precisely those we wanted to classify on first slide.

⇒ Classification of algebras via inv(−).
Can deduce classification of algebras via Ell(−).

Future goal: move more hypotheses (regularity?) to the
morphisms, allowing even more general algebras.
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A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

Γ : amenable group; τ : canonical trace on C∗r (Γ)

• Higson-Kasparov: Γ satisfies Baum-Connes.
• Lück: range of K0(τ) is contained in Q ∼= K0(Q).
• Tu: C∗r (Γ) satisfies UCT.

Not too hard to produce compatible triple inv
(
C∗r (Γ)

)
→ inv(Q)

from this data.
Punchline:

∃ trace-preserving
C∗r (Γ) ↪→ Q

⇔ Γ is amenable ⇔ ∃ trace-preserving
LΓ ↪→ R
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STRATEGY



THE TRACE-KERNEL EXTENSION

Define B∞ := `∞B/c0B.

Will prove classification of maps A → B∞.

The trace-kernel ideal is

JB :=
{
(xn) ∈ B∞ : lim

n→∞
‖xn‖2,u = 0

}
,

where ‖x‖2,u = sup
τ∈T(B)

τ(x∗x)1/2.

The trace-kernel extension is

0 → JB → B∞ → B∞ → 0.

Conditions on B⇝ JB nice enough to employ KK machinery
⇝ B∞ behaves like a finite vNa (sort of)
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APPROXIMATE CLASSIFICATION OF MORPHISMS: MAJOR STEPS

A

0 JB B∞ B∞ 0j q

1. Classify morphisms into B∞

(von Neumann techniques)
2. Classify lifts of morphisms to B∞

(Ext, KK techniques)
3. Deal with KK-theory, exploiting JB
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1. CLASSIFYING MAPS INTO B∞

Theorem (Castillejos-Evington-Tikuisis-White + · · · )
Let A: exact; B: Z-stable, T(B) 6= ∅ & compact,
t : T(B∞) → Tamenable(A) continuous affine.

=⇒ ∃ nuclear ∗-hom. θ : A → B∞

s.t. τ ◦ θ = t(τ) ∀ τ ∈ T(B∞).
θ is unique up to unitary equivalence.

Compare with classifying maps from nuclear C∗-alg’s
into II1 factors.
In fact: if T(B) = {τ}, B∞ is essentially a vNA ultrapower of
πτ(B)′′.
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2. CLASSIFYING LIFTS (A GLIMPSE)

Setup: A: sep. exact; B: Z-stable, strict comp. w.r.t. T(B),
T(B) 6= ∅ & compact

Theorem (Existence for lifts)
θ : A → B∞ full nuclear *-hom;
κ ∈ KK(A,B∞), [q]KKκ = [θ]KK

=⇒ ∃ full nuclear lift φ : A → B∞ of θ
s.t. [φ]KK = κ.

(Very) roughly:

• θ determines a pullback extension eθ whose class in
Ext(A, JB) vanishes.

• [eθ] = 0 =⇒ eθ⊕(trivial extension) ≈ a split extension.
• Weyl-von Neumann-Voiculescu type absorption theorems
=⇒ eθ⊕(trivial extension) ≈ eθ.
=⇒ eθ splits, and θ lifts.

18
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• Weyl-von Neumann-Voiculescu type absorption theorems
=⇒ eθ⊕(trivial extension) ≈ eθ.
=⇒ eθ splits, and θ lifts.
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What if we have two (nuclear) lifts φ and ψ of θ?

A

0 JB B∞ B∞ 0

θ
φψ

Under these hypotheses:

• get class [φ,ψ] ∈ KK(A, JB)
• [φ,ψ] determines when φ, ψ are approx. unitarily equiv.
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Think of Voiculescu’s Theorem:

A

0 K B(H) Q(H) 0

θ

φψ

If φ,ψ are “admissible” (faithful, nondegenerate, and
φ(A) ∩ K = {0} = ψ(A) ∩ K), then φ ≈u ψ.

More can be said:
Theorem (Dadarlat-Eilers ’01)
Suppose: φ,ψ : A → B(H) are admissible lifts of θ.

Then:

[φ,ψ] = 0 ∈ KK(A,K) =⇒ φ ≈u ψ via unitaries in K + C1H .
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A

0 JB B∞ B∞ 0

θ
φψ

j q

Theorem (Uniqueness for lifts; CGSTW)

• A: sep. exact;
• B: Z-stable, strict comparison w.r.t. T(B), T(B) 6= ∅ & cpt;
• φ,ψ: unitizably full, nuclear lifts of θ.

[φ,ψ] = 0 ∈ KK(A, JB) =⇒ φ ≈u ψ via unitaries in J̃B .
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3. FROM KK TO inv: ROTATION MAPS

Consider maps

A

0 JB B∞ B∞ 0

φψ
j q

agreeing modulo JB.

Solutions to lifting problems were encoded in certain KK
classes. Want to compute this information in terms inv(−).

For instance, can inv detect when [φ,ψ] ∈ KK(A, JB) vanishes?

22



∃ morphism
j∗ : KK(A, JB) → HomΛ

(
K(A), K(B∞)

)
[φ,ψ] 7→ K(φ)− K(ψ)

induced by j : JB → B∞.

K(φ) = K(ψ) doesn’t guarantee [φ,ψ] = 0.

Subtle obstruction:
Even if φ(u) ∼h ψ(u) is true for u ∈ U(A), the path ξ
connecting them might have nonzero “winding number”.

⇝ rotation map R
(
[φ,ψ]

)
; (roughly) assigns the function

τ 7→ 1
2πi

∫ 1

0
τ
(dξ(t)

dt ξ(t)−1
)
dt

to [u] ∈ K1(A). This is an element of Aff T(B∞).
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Want to encode this additional obstruction to [φ,ψ] = 0
using Kalg1 .

Idea: use Thomsen’s map

Aff T(B∞) → Kalg1 (B∞)

which, given h = h∗ ∈ B∞, maps ĥ to [e2πih]alg.

Punchline
Assuming K(φ) = K(ψ),

Kalg1 (φ)−Kalg1 (ψ) = 0 =⇒ R
(
[φ,ψ]

)
= 0 =⇒ [φ,ψ] = 0.

This let us access the classification theorem for lifts.

24



Want to encode this additional obstruction to [φ,ψ] = 0
using Kalg1 .

Idea: use Thomsen’s map

Aff T(B∞) → Kalg1 (B∞)

which, given h = h∗ ∈ B∞, maps ĥ to [e2πih]alg.
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SUMMARY



Using inv(—) can provide ∃ and ! for *-hom’s

sep., simple,
nuclear, UCT

−→ sep., simple, nuclear,
finite, Z-stable

(can do this much more generally!)

Can use this to classify algebras
. . . even in the non-unital setting.

Theorem
Suppose A and B are non-unital, simple, separable, nuclear,
Z-stable C∗-algebras satisfying the UCT.

Any isomorphism Ell(A) ∼−→ Ell(B) lifts to an isomorphism
A ∼−→ B.
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THANK YOU!
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