CLASSIFYING *-HOMOMORPHISMS

JOINT WORK WITH J. GABE, C. SCHAFHAUSER, A. TIKUISIS, AND S. WHITE

José Carrión
TCU
October 13, 2019
ECOAS, Ohio State

INTRODUCTION

THE CLASSIFICATION THEOREM

Theorem ("Many hands")

C*-algebras that are unital, simple, separable, nuclear, regular, and satisfy the UCT, are classified by K-theory and traces.

- C*-analog of the classification of injective von Neumann factors: Murray-von Neumann, Connes, Haagerup.
- No traces: Kirchberg-Phillips (1990s).
- We focus only on the case $T(A) \neq \varnothing$.
- Classifying invariant:

$$
\operatorname{Ell}(A):=\left(K_{0}(A),\left[1_{A}\right]_{0}, K_{1}(A), T(A), T(A) \times K_{0}(A) \rightarrow \mathbb{R}\right)
$$

AN EXAMPLE: $C(X) \rtimes G$

Setup: G, a countable discrete group, acting on X, a compact metric space.
When does $C(X) \rtimes G$ satisfy the hypotheses?

AN EXAMPLE: $C(X) \rtimes G$

Setup: G, a countable discrete group, acting on X, a compact metric space.
When does $C(X) \rtimes G$ satisfy the hypotheses?
$C(X) \rtimes G$ is...

- . . . unital, since X is compact;

AN EXAMPLE: $C(X) \rtimes G$

Setup: G, a countable discrete group, acting on X, a compact metric space.
When does $C(X) \rtimes G$ satisfy the hypotheses?
$C(X) \rtimes G$ is...

- . . . unital, since X is compact;
- . . . simple, if the action is free and minimal;

AN EXAMPLE: $C(X) \rtimes G$

Setup: G, a countable discrete group, acting on X, a compact metric space.
When does $C(X) \rtimes G$ satisfy the hypotheses?
$C(X) \rtimes G$ is...

- . . . unital, since X is compact;
- . . . simple, if the action is free and minimal;
- ... separable, since G is countable and X is metrizable;

AN EXAMPLE: $C(X) \rtimes G$

Setup: G, a countable discrete group, acting on X, a compact metric space.
When does $C(X) \rtimes G$ satisfy the hypotheses?
$C(X) \rtimes G$ is. . .

- . . . unital, since X is compact;
- . . . simple, if the action is free and minimal;
- ... separable, since G is countable and X is metrizable;
- ... nuclear, if G is amenable;

AN EXAMPLE: $C(X) \rtimes G$

Setup: G, a countable discrete group, acting on X, a compact metric space.
When does $C(X) \rtimes G$ satisfy the hypotheses?
$C(X) \rtimes G$ is...

- . . . unital, since X is compact;
- . . . simple, if the action is free and minimal;
- ... separable, since G is countable and X is metrizable;
- ... nuclear, if G is amenable;
- . . . in the UCT class, if G is amenable;

AN EXAMPLE: $C(X) \rtimes G$

Setup: G, a countable discrete group, acting on X, a compact metric space.
When does $C(X) \rtimes G$ satisfy the hypotheses?
$C(X) \rtimes G$ is...

- . . . unital, since X is compact;
- . . . simple, if the action is free and minimal;
- ... separable, since G is countable and X is metrizable;
- ... nuclear, if G is amenable;
- . . . in the UCT class, if G is amenable;
- ... regular, if X is finite dimensional and G is fog. nilpotent.

REGULARITY

Finite nuclear dimension (Winter-Zacharias)

- $\operatorname{dim}_{\text {nuc }} A$: noncommutative analog of covering dimension
- $\operatorname{dim}_{\text {nuc }} C(X)=\operatorname{dim} X$
- range of Ell(-) exhausted by C^{*}-algebras with $\operatorname{dim}_{n u c}<\infty$

REGULARITY

Finite nuclear dimension (Winter-Zacharias)

- $\operatorname{dim}_{\text {nuc }} A$: noncommutative analog of covering dimension
- $\operatorname{dim}_{\text {nuc }} C(X)=\operatorname{dim} X$
- range of Ell(-) exhausted by C^{*}-algebras with $\operatorname{dim}_{\text {nuc }}<\infty$

\mathcal{Z}-stability: $A \cong A \otimes \mathcal{Z}$

- Jiang-Su algebra $\mathcal{Z}: \infty$-dim'l analog of \mathbb{C}.
- $\mathcal{Z} \sim_{K K} \mathbb{C}$; has unique trace.
- $\operatorname{Ell}(A)=\operatorname{Ell}(A \otimes \mathcal{Z})$

Theorem (Castillejos-Evington-Tikuisis-White-Winter)

For A is a unital, simple, separable, nuclear, nonelementary,

$$
\operatorname{dim}_{\text {nuc }} A<\infty \quad \Leftrightarrow \quad A \cong A \otimes \mathcal{Z}
$$

Comments:

- " \Rightarrow " is due to Winter
- Can remove "unital" from statement: Castillejos-Evington, Tikuisis.
- Conjecturally equivalent to a third condition: strict comparison. (True under mild trace hypotheses.)
- Proof developed important technique for handling complicated trace spaces.

THE ORIGINAL ROAD TO CLASSIFICATION (~2017)

Impossible to summarize decades of work in a slide.
Some recent components:

Classification of "model" algebras

- Gong-Lin-Niu '15: classified C*-algebras with a certain internal tracial approximation structure.
- The class exhausts range of Ell(-).

Realizing the approximations

- Elliott-Gong-Lin-Niu '15: abstract conditions on a C*-algebra \Rightarrow concrete tracial approximations of GLN.
- Tikuisis-White-Winter '17: the abstract conditions are the ones stated in the classification theorem.

A DIFFERENT APPROACH

We develop an alternate route to classification: beginning with von Neumann algebraic techniques inspired by work of Connes and Haagerup, we extend the KK-theoretic techniques recently developed by Schafhauser to prove classification theorems in an abstract setting.

A DIFFERENT APPROACH

We develop an alternate route to classification: beginning with von Neumann algebraic techniques inspired by work of Connes and Haagerup, we extend the KK-theoretic techniques recently developed by Schafhauser to prove classification theorems in an abstract setting.

We will (mostly) ignore the difficulties that arise from non-separability or the lack of a unit.

CLASSIFYING MORPHISMS \& ALGEBRAS

EXISTENCE AND UNIQUENESS INTO $\|_{1}$ FACTORS

Theorem (Connes '76)

Injective von Neumann Algebras are AFD.

Corollary

A: nuclear C*-algebra; $M: \|_{1}$ factor.

1. (existence)

$$
\tau \in T(A) \Longrightarrow \exists * \text {-hom } \varphi: A \rightarrow M \text { s.t. } \tau_{M} \circ \varphi=\tau .
$$

2. (uniqueness)

$$
\begin{aligned}
& \varphi, \psi: A \rightarrow M * \text {-hom's s.t. } T_{M} \circ \varphi=T_{M} \circ \psi \\
& \Longrightarrow \varphi \approx_{u} \psi\left(\text { in }\|\cdot\|_{2}\right)
\end{aligned}
$$

CLASSIFICATION OF MORPHISMS

Rough scheme

Produce invariant inv(-) s.t.
(with abstract hypotheses on A, B):

- (existence)
$\alpha: \operatorname{inv}(A) \rightarrow \operatorname{inv}(B) \Longrightarrow \exists \varphi: A \rightarrow B$ s.t. $\operatorname{inv}(\varphi)=\alpha ;$
- (uniqueness)

$$
\varphi, \psi: A \rightarrow B \text { and } \operatorname{inv}(\varphi)=\operatorname{inv}(\varphi) \Longrightarrow \varphi \approx_{u} \psi
$$

Intertwining: $\operatorname{inv}(A) \cong \operatorname{inv}(B) \Longrightarrow A \cong B$.

CLASSIFICATION OF MORPHISMS

Rough scheme

Produce invariant inv(-) s.t.
(with abstract hypotheses on A, B):

- (existence)

$$
\alpha: \operatorname{inv}(A) \rightarrow \operatorname{inv}(B) \Longrightarrow \exists \varphi: A \rightarrow B \text { s.t. } \operatorname{inv}(\varphi)=\alpha ;
$$

- (uniqueness)

$$
\varphi, \psi: A \rightarrow B \text { and } \operatorname{inv}(\varphi)=\operatorname{inv}(\varphi) \Longrightarrow \varphi \approx_{u} \psi
$$

Intertwining: $\operatorname{inv}(A) \cong \operatorname{inv}(B) \Longrightarrow A \cong B$.
inv(-) will be more complicated than Ell(-).
Also want:

$$
\operatorname{Ell}(A) \cong \operatorname{Ell}(B) \text { yields } \operatorname{inv}(A) \cong \operatorname{inv}(B) .
$$

ONE INGREDIENT: TOTAL K-THEORY

Definition

$$
\underline{K}(A)=\bigoplus_{n=0}^{\infty} K_{0}(A ; \mathbb{Z} / n \mathbb{Z}) \oplus K_{1}(A ; \mathbb{Z} / n \mathbb{Z})
$$

Can think of $K_{i}(A ; \mathbb{Z} / n \mathbb{Z})$ as $K_{i}\left(A \otimes \mathcal{O}_{n+1}\right)$.

ONE INGREDIENT: TOTAL K-THEORY

Definition

$$
\underline{K}(A)=\bigoplus_{n=0}^{\infty} K_{0}(A ; \mathbb{Z} / n \mathbb{Z}) \oplus K_{1}(A ; \mathbb{Z} / n \mathbb{Z})
$$

Can think of $K_{i}(A ; \mathbb{Z} / n \mathbb{Z})$ as $K_{i}\left(A \otimes \mathcal{O}_{n+1}\right)$.

Slogan

Can check "closeness" of $K K(\varphi)$ and $K K(\psi)$ by checking that $\underline{K}(\varphi)$ and $\underline{K}(\psi)$ agree on large finite subsets of $\underline{K}(A)$.

ANOTHER INGREDIENT OF INV(-): "ALGEBRAIC" K_{1}

Thomsen-Nielsen (early 90s): different proof of Elliott's classification of simple unital AT algebras. Need refined inv.

ANOTHER INGREDIENT OF INV(-): "ALGEBRAIC" K_{1}

Thomsen-Nielsen (early 90s): different proof of Elliott's classification of simple unital AT algebras. Need refined inv.

Definition

$$
\bar{K}_{1}^{\mathrm{alg}}(A):=U^{\infty}(A) / C U^{\infty}(A)
$$

$C U^{\infty}(A)$ is the closure of the commutator subgroup of $U^{\infty}(A)$.

ANOTHER INGREDIENT OF INV(-): "ALGEBRAIC" K_{1}

Thomsen-Nielsen (early 90s): different proof of Elliott's classification of simple unital AT algebras. Need refined inv.

Definition

$$
\bar{K}_{1}^{\mathrm{alg}}(A):=U^{\infty}(A) / C U^{\infty}(A)
$$

$C U^{\infty}(A)$ is the closure of the commutator subgroup of $U^{\infty}(A)$.
$\bar{K}_{1}^{\text {alg }}(A)$ came up in Thomsen's work on the role of the relationship between and K-theory and traces in classification theory. Has seen lots of use in classification (e.g. in GLN).

THE INVARIANT

Definition

$$
\operatorname{inv}(A):=\left(\underline{K}(A), \bar{K}_{1}^{\mathrm{alg}}(A), \operatorname{Aff} T(A)\right)
$$

THE INVARIANT

Definition

$$
\operatorname{inv}(A):=\left(\underline{K}(A), \quad \bar{K}_{1}^{\mathrm{alg}}(A), \quad \operatorname{Aff} T(A)\right)
$$

A compatible triple $(\underline{\alpha}, \beta, \gamma): \operatorname{inv}(A) \rightarrow \operatorname{inv}(E)$ consists of

$$
\underline{\alpha}: \underline{K}(A) \rightarrow \underline{K}(E), \quad \beta: \bar{K}_{1}^{\mathrm{ag}}(A) \rightarrow \bar{K}_{1}^{\mathrm{alg}}(E), \quad \gamma: \operatorname{Aff} T(A) \rightarrow \operatorname{Aff} T(E)
$$

such that

$$
\begin{aligned}
& K_{0}(A) \xrightarrow{\rho_{A}} \operatorname{Aff} T(A) \xrightarrow{T h_{A}} \bar{K}_{1}^{\text {alg }}(A) \longrightarrow K_{1}(A) \\
& \downarrow \alpha_{0} \downarrow \nu \quad \downarrow \beta \quad \downarrow \alpha_{1} \\
& K_{0}(E) \xrightarrow{\rho_{E}} \operatorname{Aff} T(E) \xrightarrow{\mathrm{Th}_{E}} \bar{K}_{1}^{\mathrm{alg}}(E) \longrightarrow K_{1}(E)
\end{aligned}
$$

commutes.

THE INVARIANT

Definition

$$
\operatorname{inv}(A):=\left(\underline{K}(A), \quad \bar{K}_{1}^{\mathrm{alg}}(A), \quad \operatorname{Aff} T(A)\right)
$$

A compatible triple $(\underline{\alpha}, \beta, \gamma): \operatorname{inv}(A) \rightarrow \operatorname{inv}(E)$ consists of

$$
\underline{\alpha}: \underline{K}(A) \rightarrow \underline{K}(E), \quad \beta: \bar{K}_{1}^{\mathrm{alg}}(A) \rightarrow \bar{K}_{1}^{\mathrm{alg}}(E), \quad \gamma: \operatorname{Aff} T(A) \rightarrow \operatorname{Aff} T(E)
$$

such that

$$
\begin{aligned}
& K_{0}(A) \xrightarrow{\rho_{A}} \operatorname{Aff} T(A) \xrightarrow{T h_{A}} \bar{K}_{1}^{\text {alg }}(A) \longrightarrow K_{1}(A) \\
& \downarrow \alpha_{0} \downarrow \nu \quad \downarrow \beta \quad \downarrow \alpha_{1} \\
& K_{0}(E) \xrightarrow{\rho_{E}} \operatorname{Aff} T(E) \xrightarrow{\mathrm{Th}_{E}} \bar{K}_{1}^{\mathrm{alg}}(E) \longrightarrow K_{1}(E)
\end{aligned}
$$

commutes.
$(\underline{\alpha}, \beta, \gamma)$ is faithful and amenable if $\gamma^{*}(T(E)) \subseteq T(A)$ consists of faithful amenable traces.

CLASSIFICATION OF MORPHISMS

Theorem (C-Gabe-Schafhauser-Tikuisis-White)

- A : sep., exact, UCT
- B : sep., \mathcal{Z}-stable, strict comparison w.r.t. $T(B), T(B) \neq \varnothing$ \& compact
- $(\underline{\alpha}, \beta, \gamma): \operatorname{inv}(A) \rightarrow \operatorname{inv}(B):$ compatible triple that is faithful and amenable

Then:

- \exists full ${ }^{\dagger}$ nuclear ${ }^{*}$-hom. $\varphi: A \rightarrow B$ s.t. $\operatorname{inv}(\varphi)=(\underline{\alpha}, \beta, \gamma)$;
- this φ is unique up to approx. unitary equivalence.

CLASSIFICATION OF MORPHISMS

Theorem (C-Gabe-Schafhauser-Tikuisis-White)

- A : sep., exact, UCT
- B : sep., \mathcal{Z}-stable, strict comparison w.r.t. $T(B), T(B) \neq \varnothing$ \& compact
- $(\underline{\alpha}, \beta, \gamma): \operatorname{inv}(A) \rightarrow \operatorname{inv}(B):$ compatible triple that is faithful and amenable

Then:

- \exists full ${ }^{\dagger}$ nuclear ${ }^{*}$-hom. $\varphi: A \rightarrow B$ s.t. $\operatorname{inv}(\varphi)=(\underline{\alpha}, \beta, \gamma)$;
- this φ is unique up to approx. unitary equivalence.
${ }^{\dagger}: \varphi(a)$ generates B as an ideal $\forall a \neq 0$. Wrinkle with units.

CLASSIFICATION OF MORPHISMS

Theorem (C-Gabe-Schafhauser-Tikuisis-White)

- A : sep., exact, UCT
- B : sep., \mathcal{Z}-stable, strict comparison w.r.t. $T(B), T(B) \neq \varnothing$ \& compact
- $(\underline{\alpha}, \beta, \gamma): \operatorname{inv}(A) \rightarrow \operatorname{inv}(B):$ compatible triple that is faithful and amenable

Then:

- \exists full ${ }^{\dagger}$ nuclear ${ }^{*}$-hom. $\varphi: A \rightarrow B$ s.t. $\operatorname{inv}(\varphi)=(\underline{\alpha}, \beta, \gamma)$;
- this φ is unique up to approx. unitary equivalence.
${ }^{\dagger}: \varphi(a)$ generates B as an ideal $\forall a \neq 0$. Wrinkle with units.

CLASSIFYING ALGEBRAS

The (unital) C*-algebras in
$\left\{\begin{array}{c}\text { alg's satisfying } \\ \text { domain hyp. }\end{array}\right\} \cap\left\{\begin{array}{c}\text { alg's satisfying } \\ \text { target hyp. }\end{array}\right\} \cap\left\{\begin{array}{c}A: \text { id }_{A} \text { satisfies } \\ \text { morphism hyp. }\end{array}\right\}$ are precisely those we wanted to classify on first slide.
\Rightarrow Classification of algebras via inv(-).
Can deduce classification of algebras via Ell(-).

CLASSIFYING ALGEBRAS

The (unital) C*-algebras in
$\left\{\begin{array}{c}\text { alg's satisfying } \\ \text { domain hyp. }\end{array}\right\} \cap\left\{\begin{array}{c}\text { alg's satisfying } \\ \text { target hyp. }\end{array}\right\} \cap\left\{\begin{array}{c}A \text { : id }{ }_{A} \text { satisfies } \\ \text { morphism hyp. }\end{array}\right\}$ are precisely those we wanted to classify on first slide.
\Rightarrow Classification of algebras via inv(-). Can deduce classification of algebras via Ell(-).

Future goal: move more hypotheses (regularity?) to the morphisms, allowing even more general algebras.

A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

Γ : amenable group; $\quad \tau$: canonical trace on $C_{r}^{*}(\Gamma)$

- Higson-Kasparov: 「 satisfies Baum-Connes.
- Lück: range of $K_{0}(T)$ is contained in $\mathbb{Q} \cong K_{0}(\mathcal{Q})$.
- Tu: $C_{r}^{*}(\Gamma)$ satisfies UCT.

Not too hard to produce compatible triple inv $\left(C_{r}^{*}(\Gamma)\right) \rightarrow \operatorname{inv}(\mathcal{Q})$ from this data.

A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

Γ : amenable group; $\quad \tau$: canonical trace on $C_{r}^{*}(\Gamma)$

- Higson-Kasparov: 「 satisfies Baum-Connes.
- Lück: range of $K_{0}(T)$ is contained in $\mathbb{Q} \cong K_{0}(\mathcal{Q})$.
- Tu: $C_{r}^{*}(\Gamma)$ satisfies UCT.

Not too hard to produce compatible triple $\operatorname{inv}\left(C_{r}^{*}(\Gamma)\right) \rightarrow \operatorname{inv}(\mathcal{Q})$ from this data.

Punchline:

\exists trace-preserving

$$
\Leftrightarrow\ulcorner\text { is amenable }
$$

A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

Γ : amenable group; T : canonical trace on $C_{r}^{*}(\Gamma)$

- Higson-Kasparov: 「 satisfies Baum-Connes.
- Lück: range of $K_{0}(T)$ is contained in $\mathbb{Q} \cong K_{0}(\mathcal{Q})$.
- Tu: $C_{r}^{*}(\Gamma)$ satisfies UCT.

Not too hard to produce compatible triple $\operatorname{inv}\left(C_{r}^{*}(\Gamma)\right) \rightarrow \operatorname{inv}(\mathcal{Q})$ from this data.

Punchline:

\exists trace-preserving

$$
\begin{aligned}
& \text { race-preserving } \\
& C_{r}^{*}(\Gamma) \hookrightarrow \mathcal{Q}
\end{aligned} \Leftrightarrow \Gamma \text { is amenable } \Leftrightarrow \begin{gathered}
\exists \text { trace-preserving } \\
L \Gamma \hookrightarrow \mathcal{R}
\end{gathered}
$$

STRATEGY

THE TRACE-KERNEL EXTENSION

Define $B_{\infty}:=\ell^{\infty} B / C_{0} B$.
Will prove classification of maps $A \rightarrow B_{\infty}$.
The trace-kernel ideal is

$$
J_{B}:=\left\{\left(x_{n}\right) \in B_{\infty}: \lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{2, u}=0\right\},
$$

THE TRACE-KERNEL EXTENSION

Define $B_{\infty}:=\ell^{\infty} B / C_{0} B$.
Will prove classification of maps $A \rightarrow B_{\infty}$.
The trace-kernel ideal is

$$
\begin{aligned}
J_{B}:=\left\{\left(x_{n}\right) \in B_{\infty}:\right. & \left.\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{2, u}=0\right\} \\
& \text { where }\|x\|_{2, u}=\sup _{T \in T(B)} T\left(x^{*} x\right)^{1 / 2}
\end{aligned}
$$

THE TRACE-KERNEL EXTENSION

Define $B_{\infty}:=\ell^{\infty} B / C_{0} B$.
Will prove classification of maps $A \rightarrow B_{\infty}$.
The trace-kernel ideal is

$$
\begin{aligned}
J_{B}:=\left\{\left(x_{n}\right) \in B_{\infty}:\right. & \left.\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{2, u}=0\right\} \\
& \text { where }\|x\|_{2, u}=\sup _{T \in T(B)} T\left(x^{*} x\right)^{1 / 2} .
\end{aligned}
$$

The trace-kernel extension is

$$
0 \rightarrow J_{B} \rightarrow B_{\infty} \rightarrow B^{\infty} \rightarrow 0 .
$$

THE TRACE-KERNEL EXTENSION

Define $B_{\infty}:=\ell^{\infty} B / C_{0} B$.
Will prove classification of maps $A \rightarrow B_{\infty}$.
The trace-kernel ideal is

$$
\begin{aligned}
J_{B}:=\left\{\left(x_{n}\right) \in B_{\infty}:\right. & \left.\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{2, u}=0\right\}, \\
& \text { where }\|x\|_{2, u}=\sup _{T \in T(B)} T\left(x^{*} x\right)^{1 / 2} .
\end{aligned}
$$

The trace-kernel extension is

$$
0 \rightarrow J_{B} \rightarrow B_{\infty} \rightarrow B^{\infty} \rightarrow 0 .
$$

Conditions on $B \rightsquigarrow J_{B}$ nice enough to employ $K K$ machinery

THE TRACE-KERNEL EXTENSION

Define $B_{\infty}:=\ell^{\infty} B / C_{0} B$.
Will prove classification of maps $A \rightarrow B_{\infty}$.
The trace-kernel ideal is

$$
\begin{aligned}
J_{B}:=\left\{\left(x_{n}\right) \in B_{\infty}:\right. & \left.\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{2, u}=0\right\}, \\
& \text { where }\|x\|_{2, u}=\sup _{T \in T(B)} T\left(x^{*} x\right)^{1 / 2} .
\end{aligned}
$$

The trace-kernel extension is

$$
0 \rightarrow J_{B} \rightarrow B_{\infty} \rightarrow B^{\infty} \rightarrow 0 .
$$

Conditions on $B \rightsquigarrow J_{B}$ nice enough to employ $K K$ machinery $\rightsquigarrow B^{\infty}$ behaves like a finite $v N a$ (sort of)

APPROXIMATE CLASSIFICATION OF MORPHISMS: MAJOR STEPS

$$
\begin{gathered}
A \\
0 \longrightarrow J_{B} \xrightarrow{j} B_{\infty} \xrightarrow{q} B^{\infty} \longrightarrow 0
\end{gathered}
$$

APPROXIMATE CLASSIFICATION OF MORPHISMS: MAJOR STEPS

1. Classify morphisms into B^{∞} (von Neumann techniques)

APPROXIMATE CLASSIFICATION OF MORPHISMS: MAJOR STEPS

1. Classify morphisms into B^{∞} (von Neumann techniques)
2. Classify lifts of morphisms to B_{∞}
(Ext, KK techniques)

APPROXIMATE CLASSIFICATION OF MORPHISMS: MAJOR STEPS

1. Classify morphisms into B^{∞} (von Neumann techniques)
2. Classify lifts of morphisms to B_{∞} (Ext, KK techniques)
3. Deal with KK-theory, exploiting J_{B}

1. CLASSIFYING MAPS INTO B^{∞}

Theorem (Castillejos-Evington-Tikuisis-White $+\cdots$)

Let A : exact; B: \mathcal{Z}-stable, $T(B) \neq \varnothing$ \& compact,
$\mathfrak{t}: T\left(B^{\infty}\right) \rightarrow T_{\text {amenable }}(A)$ continuous affine.
$\Longrightarrow \exists$ nuclear ${ }^{*}$-hom. $\theta: A \rightarrow B^{\infty}$

$$
\text { s.t. } T \circ \theta=\mathfrak{t}(T) \forall T \in T\left(B^{\infty}\right) \text {. }
$$

θ is unique up to unitary equivalence.

Compare with classifying maps from nuclear C*-alg's into $\|_{1}$ factors.
In fact: if $T(B)=\{\tau\}, B^{\infty}$ is essentially a vNA ultrapower of $\pi_{T}(B)^{\prime \prime}$.

2. CLASSIFYING LIFTS (A GLIMPSE)

Setup: A: sep. exact; B: \mathcal{Z}-stable, strict comp. w.r.t. $T(B)$, $T(B) \neq \varnothing$ \& compact

Theorem (Existence for lifts)

$\theta: A \rightarrow B^{\infty}$ full nuclear *-hom;
$K \in K K\left(A, B_{\infty}\right), \quad[q]_{\kappa K} K=[\theta]_{K K}$
$\Longrightarrow \exists$ full nuclear lift $\varphi: A \rightarrow B_{\infty}$ of θ
s.t. $[\varphi]_{K K}=\kappa$.

2. CLASSIFYING LIFTS (A GLIMPSE)

Setup: A: sep. exact; B: \mathcal{Z}-stable, strict comp. w.r.t. $T(B)$, $T(B) \neq \varnothing$ \& compact

Theorem (Existence for lifts)

$\theta: A \rightarrow B^{\infty}$ full nuclear *-hom;
$K \in K K\left(A, B_{\infty}\right), \quad[q]_{\kappa K} K=[\theta]_{K K}$
$\Longrightarrow \exists$ full nuclear lift $\varphi: A \rightarrow B_{\infty}$ of θ
s.t. $[\varphi]_{K K}=\kappa$.
(Very) roughly:

- θ determines a pullback extension e_{θ} whose class in $\operatorname{Ext}\left(A, J_{B}\right)$ vanishes.

2. CLASSIFYING LIFTS (A GLIMPSE)

Setup: A: sep. exact; B: \mathcal{Z}-stable, strict comp. w.r.t. $T(B)$, $T(B) \neq \varnothing$ \& compact

Theorem (Existence for lifts)

$\theta: A \rightarrow B^{\infty}$ full nuclear *-hom;
$K \in K K(A, B \infty), \quad[q]_{\kappa К} K=[\theta]_{\kappa K}$
$\Longrightarrow \exists$ full nuclear lift $\varphi: A \rightarrow B_{\infty}$ of θ
s.t. $[\varphi]_{K K}=\kappa$.
(Very) roughly:

- θ determines a pullback extension e_{θ} whose class in $\operatorname{Ext}\left(A, J_{B}\right)$ vanishes.
- $\left[e_{\theta}\right]=0 \Longrightarrow e_{\theta} \oplus$ (trivial extension $) \approx$ a split extension.

2. CLASSIFYING LIFTS (A GLIMPSE)

Setup: A: sep. exact; B: \mathcal{Z}-stable, strict comp. w.r.t. $T(B)$, $T(B) \neq \varnothing$ \& compact

Theorem (Existence for lifts)

$\theta: A \rightarrow B^{\infty}$ full nuclear *-hom;
$K \in K K\left(A, B_{\infty}\right), \quad[q]_{\kappa K} K=[\theta]_{K K}$
$\Longrightarrow \exists$ full nuclear lift $\varphi: A \rightarrow B_{\infty}$ of θ
s.t. $[\varphi]_{K K}=\kappa$.
(Very) roughly:

- θ determines a pullback extension e_{θ} whose class in $\operatorname{Ext}\left(A, J_{B}\right)$ vanishes.
- $\left[e_{\theta}\right]=0 \Longrightarrow e_{\theta} \oplus$ (trivial extension) \approx a split extension.
- Weyl-von Neumann-Voiculescu type absorption theorems $\Longrightarrow e_{\theta} \oplus$ (trivial extension) $\approx e_{\theta}$.

What if we have two (nuclear) lifts φ and ψ of θ ?

Under these hypotheses:

- get class $[\varphi, \psi] \in K K\left(A, J_{B}\right)$
- $[\varphi, \psi]$ determines when φ, ψ are approx. unitarily equiv.

Think of Voiculescu's Theorem:

If φ, ψ are "admissible" (faithful, nondegenerate, and $\varphi(A) \cap \mathcal{K}=\{0\}=\psi(A) \cap \mathcal{K})$, then $\varphi \approx_{u} \psi$.

Think of Voiculescu's Theorem:

If φ, ψ are "admissible" (faithful, nondegenerate, and $\varphi(A) \cap \mathcal{K}=\{0\}=\psi(A) \cap \mathcal{K})$, then $\varphi \approx_{u} \psi$.

More can be said:

Theorem (Dadarlat-Eilers '01)

Suppose: $\varphi, \psi: A \rightarrow \mathcal{B}(\mathcal{H})$ are admissible lifts of θ.
Then:
$[\varphi, \psi]=0 \in K K(A, \mathcal{K}) \Longrightarrow \varphi \approx_{u} \psi$ via unitaries in $\mathcal{K}+\mathbb{C} 1_{\mathcal{H}}$.

Theorem (Uniqueness for lifts; CGSTW)

- A: sep. exact;
- B: Z
- φ, ψ : unitizably full, nuclear lifts of θ.
$[\varphi, \psi]=0 \in K K\left(A, J_{B}\right) \quad \Longrightarrow \quad \varphi \approx_{u} \psi$ via unitaries in \tilde{J}_{B}.

3. FROM KK to inv: ROTATION MAPS

Consider maps

$$
0 \longrightarrow J_{B} \xrightarrow{j^{A}} \stackrel{\psi \downarrow \downarrow_{\downarrow} \varphi}{ } B_{\infty} \xrightarrow{q} B^{\infty} \longrightarrow 0
$$

agreeing modulo J_{B}.
Solutions to lifting problems were encoded in certain KK classes. Want to compute this information in terms inv(-).

For instance, can inv detect when $[\varphi, \psi] \in K K\left(A, J_{B}\right)$ vanishes?
\exists morphism

$$
\begin{aligned}
j_{*}: K K\left(A, J_{B}\right) & \rightarrow \operatorname{Hom}_{\wedge}\left(\underline{K}(A), \underline{K}\left(B_{\infty}\right)\right) \\
{[\varphi, \psi] } & \mapsto \underline{K}(\varphi)-\underline{K}(\psi)
\end{aligned}
$$

induced by $j: J_{B} \rightarrow B_{\infty}$.
\exists morphism

$$
\begin{aligned}
j_{*}: K K\left(A, J_{B}\right) & \rightarrow \operatorname{Hom}_{\wedge}\left(\underline{K}(A), \underline{K}\left(B_{\infty}\right)\right) \\
{[\varphi, \psi] } & \mapsto \underline{K}(\varphi)-\underline{K}(\psi)
\end{aligned}
$$

induced by $j: J_{B} \rightarrow B_{\infty}$.
$\underline{K}(\varphi)=\underline{K}(\psi)$ doesn't guarantee $[\varphi, \psi]=0$.

Subtle obstruction:

Even if $\varphi(u) \sim_{h} \psi(u)$ is true for $u \in U(A)$, the path ξ connecting them might have nonzero "winding number".
\exists morphism

$$
\begin{aligned}
j_{*}: K K\left(A, J_{B}\right) & \rightarrow \operatorname{Hom}_{\wedge}\left(\underline{K}(A), \underline{K}\left(B_{\infty}\right)\right) \\
{[\varphi, \psi] } & \mapsto \underline{K}(\varphi)-\underline{K}(\psi)
\end{aligned}
$$

induced by $j: J_{B} \rightarrow B_{\infty}$.
$\underline{K}(\varphi)=\underline{K}(\psi)$ doesn't guarantee $[\varphi, \psi]=0$.

Subtle obstruction:

Even if $\varphi(u) \sim_{h} \psi(u)$ is true for $u \in U(A)$, the path ξ connecting them might have nonzero "winding number".
\rightsquigarrow rotation map $R([\varphi, \Psi])$; (roughly) assigns the function

$$
T \mapsto \frac{1}{2 \pi i} \int_{0}^{1} T\left(\frac{d \xi(t)}{d t} \xi(t)^{-1}\right) d t
$$

to $[u] \in K_{1}(A)$. This is an element of $\operatorname{Aff} T\left(B_{\infty}\right)$.

Want to encode this additional obstruction to $[\varphi, \psi]=0$ using $\bar{K}_{1}^{\text {alg }}$.

Idea: use Thomsen's map

$$
\operatorname{Aff} T\left(B_{\infty}\right) \rightarrow \bar{K}_{1}^{\mathrm{alg}}\left(B_{\infty}\right)
$$

which, given $h=h^{*} \in B_{\infty}$, maps \hat{h} to $\left[e^{2 \pi i h}\right]_{\text {alg }}$.

Want to encode this additional obstruction to $[\varphi, \psi]=0$ using $\bar{K}_{1}^{\text {alg }}$.

Idea: use Thomsen's map

$$
\operatorname{Aff} T\left(B_{\infty}\right) \rightarrow \bar{K}_{1}^{\mathrm{alg}}\left(B_{\infty}\right)
$$

which, given $h=h^{*} \in B_{\infty}$, maps \hat{h} to $\left[e^{2 \pi i h}\right]_{\text {alg }}$.

Punchline

Assuming $\underline{K}(\varphi)=\underline{K}(\psi)$,
$\bar{K}_{1}^{\mathrm{alg}}(\varphi)-\bar{K}_{1}^{\mathrm{alg}}(\psi)=0 \quad \Longrightarrow \quad R([\varphi, \psi])=0 \quad \Longrightarrow \quad[\varphi, \psi]=0$.
This let us access the classification theorem for lifts.

SUMMARY

Using inv(-) can provide \exists and ! for *-hom's

(can do this much more generally!)

Using inv(-) can provide \exists and ! for *-hom’s

(can do this much more generally!)

Can use this to classify algebras
... even in the non-unital setting.

Theorem

Suppose A and B are non-unital, simple, separable, nuclear, \mathcal{Z}-stable C^{*}-algebras satisfying the UCT.

Any isomorphism Ell(A) $\xrightarrow{\sim} \mathrm{Ell}(B)$ lifts to an isomorphism $A \xrightarrow{\sim} B$.

THANK YOU!

