# CLASSIFYING \*-HOMOMORPHISMS

## JOINT WORK WITH J. GABE, C. SCHAFHAUSER, A. TIKUISIS, AND S. WHITE

José Carrión TCU October 13, 2019

ECOAS, Ohio State

## INTRODUCTION

## Theorem ("Many hands")

*C*\*-algebras that are unital, simple, separable, nuclear, regular, and satisfy the UCT, are classified by K-theory and traces.

- *C*\*-analog of the classification of injective von Neumann factors: Murray-von Neumann, Connes, Haagerup.
- No traces: Kirchberg-Phillips (1990s).
- We focus only on the case  $T(A) \neq \emptyset$ .
- Classifying invariant:

$$\mathsf{Ell}(A) := \left( \mathsf{K}_0(A), \, [\mathbf{1}_A]_0, \, \mathsf{K}_1(A), \, \mathsf{T}(A), \, \mathsf{T}(A) \times \mathsf{K}_0(A) \to \mathbb{R} \right)$$

```
C(X) \rtimes G is...
```

• ... unital, since X is compact;

- ... unital, since X is compact;
- ... simple, if the action is free and minimal;

- ... unital, since X is compact;
- ... simple, if the action is free and minimal;
- ... separable, since G is countable and X is metrizable;

- ... unital, since X is compact;
- ... simple, if the action is free and minimal;
- ... separable, since G is countable and X is metrizable;
- ... nuclear, if *G* is amenable;

- ... unital, since X is compact;
- ... simple, if the action is free and minimal;
- ... separable, since G is countable and X is metrizable;
- ... nuclear, if G is amenable;
- ... in the UCT class, if G is amenable;

- ... unital, since X is compact;
- ... simple, if the action is free and minimal;
- ... separable, since G is countable and X is metrizable;
- ... nuclear, if G is amenable;
- ... in the UCT class, if G is amenable;
- ... regular, if X is finite dimensional and G is f.g. nilpotent.

## Finite nuclear dimension (Winter-Zacharias)

- dim<sub>nuc</sub> A: noncommutative analog of covering dimension
- dim<sub>nuc</sub>  $C(X) = \dim X$
- $\cdot$  range of Ell(–) exhausted by C\*-algebras with  $\text{dim}_{\text{nuc}} < \infty$

## Finite nuclear dimension (Winter-Zacharias)

- dim<sub>nuc</sub> A: noncommutative analog of covering dimension
- $\dim_{\operatorname{nuc}} C(X) = \dim X$
- $\cdot$  range of Ell(–) exhausted by C\*-algebras with  $\text{dim}_{\text{nuc}} < \infty$

#### $\mathcal{Z}$ -stability: $A \cong A \otimes \mathcal{Z}$

- Jiang-Su algebra  $\mathcal{Z}$ :  $\infty$ -dim'l analog of  $\mathbb{C}$ .
- $\mathcal{Z} \sim_{KK} \mathbb{C}$ ; has unique trace.
- $\boldsymbol{\cdot} \ \mathsf{Ell}(A) = \mathsf{Ell}(A\otimes \mathcal{Z})$

## Theorem (Castillejos-Evington-Tikuisis-White-Winter)

For A is a unital, simple, separable, nuclear, nonelementary,

 $\dim_{\mathsf{nuc}} A < \infty \quad \Leftrightarrow \quad A \cong A \otimes \mathcal{Z}.$ 

Comments:

- · " $\Rightarrow$ " is due to Winter
- Can remove "unital" from statement: Castillejos-Evington, Tikuisis.
- Conjecturally equivalent to a third condition: *strict comparison.* (True under mild trace hypotheses.)
- Proof developed important technique for handling complicated trace spaces.

Impossible to summarize decades of work in a slide. Some recent components:

## Classification of "model" algebras

- Gong-Lin-Niu '15: classified C\*-algebras with a certain internal tracial approximation structure.
- The class exhausts range of Ell(-).

## Realizing the approximations

- Elliott-Gong-Lin-Niu '15: abstract conditions on a  $C^*$ -algebra  $\Rightarrow$  concrete tracial approximations of GLN.
- Tikuisis-White-Winter '17: the abstract conditions are the ones stated in the classification theorem.

We develop an alternate route to classification: beginning with von Neumann algebraic techniques inspired by work of Connes and Haagerup, we extend the *KK*-theoretic techniques recently developed by Schafhauser to prove classification theorems in an abstract setting.

We develop an alternate route to classification: beginning with von Neumann algebraic techniques inspired by work of Connes and Haagerup, we extend the *KK*-theoretic techniques recently developed by Schafhauser to prove classification theorems in an abstract setting.

We will (mostly) ignore the difficulties that arise from non-separability or the lack of a unit.

# CLASSIFYING MORPHISMS & ALGEBRAS

## Theorem (Connes '76)

Injective von Neumann Algebras are AFD.

### Corollary

A: nuclear C\*-algebra; M: II<sub>1</sub> factor.

1. (existence)  $\tau \in T(A) \implies \exists *-hom \ \varphi \colon A \to M \text{ s.t. } \tau_M \circ \varphi = \tau.$ 

# 2. (uniqueness) $\varphi, \psi \colon A \to M *\text{-hom's s.t. } \tau_M \circ \varphi = \tau_M \circ \psi$ $\implies \varphi \approx_u \psi \quad (in \| \cdot \|_2)$

#### Rough scheme

Produce invariant inv(-) s.t. (with abstract hypotheses on *A*, *B*):

• (existence)

 $\alpha \colon \operatorname{inv}(A) \to \operatorname{inv}(B) \implies \exists \varphi \colon A \to B \text{ s.t. } \operatorname{inv}(\varphi) = \alpha;$ 

• (uniqueness)

 $\varphi, \psi \colon A \to B \text{ and } \operatorname{inv}(\varphi) = \operatorname{inv}(\varphi) \implies \varphi \approx_u \psi.$ 

Intertwining:  $inv(A) \cong inv(B) \implies A \cong B$ .

#### Rough scheme

Produce invariant inv(-) s.t. (with abstract hypotheses on *A*, *B*):

• (existence)

 $\alpha \colon \operatorname{inv}(A) \to \operatorname{inv}(B) \implies \exists \varphi \colon A \to B \text{ s.t. inv}(\varphi) = \alpha;$ 

• (uniqueness)

 $\varphi, \psi \colon A \to B \text{ and } \operatorname{inv}(\varphi) = \operatorname{inv}(\varphi) \implies \varphi \approx_u \psi.$ 

Intertwining:  $inv(A) \cong inv(B) \implies A \cong B$ .

inv(-) will be more complicated than Ell(-).

Also want:

 $Ell(A) \cong Ell(B)$  yields  $inv(A) \cong inv(B)$ .

# Definition

 $\underline{K}(A) = \bigoplus_{n=0}^{\infty} K_0(A; \mathbb{Z}/n\mathbb{Z}) \oplus K_1(A; \mathbb{Z}/n\mathbb{Z})$ 

Can think of  $K_i(A; \mathbb{Z}/n\mathbb{Z})$  as  $K_i(A \otimes \mathcal{O}_{n+1})$ .

# **Definition** $\underline{K}(A) = \bigoplus_{n=0}^{\infty} K_0(A; \mathbb{Z}/n\mathbb{Z}) \oplus K_1(A; \mathbb{Z}/n\mathbb{Z})$

Can think of  $K_i(A; \mathbb{Z}/n\mathbb{Z})$  as  $K_i(A \otimes \mathcal{O}_{n+1})$ .

#### Slogan

Can check "closeness" of  $KK(\varphi)$  and  $KK(\psi)$  by checking that  $\underline{K}(\varphi)$  and  $\underline{K}(\psi)$  agree on large finite subsets of  $\underline{K}(A)$ .

Thomsen-Nielsen (early 90s): different proof of Elliott's classification of simple unital AT algebras. Need refined inv.

Thomsen-Nielsen (early 90s): different proof of Elliott's classification of simple unital AT algebras. Need refined inv.

Definition

$$\overline{K}_1^{\mathrm{alg}}(A) := U^{\infty}(A)/CU^{\infty}(A)$$

 $CU^{\infty}(A)$  is the *closure* of the commutator subgroup of  $U^{\infty}(A)$ .

Thomsen-Nielsen (early 90s): different proof of Elliott's classification of simple unital AT algebras. Need refined inv.

Definition

$$\overline{K}_{1}^{\text{alg}}(A) := U^{\infty}(A)/CU^{\infty}(A)$$

 $CU^{\infty}(A)$  is the *closure* of the commutator subgroup of  $U^{\infty}(A)$ .

 $\overline{K}_1^{alg}(A)$  came up in Thomsen's work on the role of the relationship between and *K*-theory and traces in classification theory.

Has seen lots of use in classification (e.g. in GLN).

#### THE INVARIANT

# Definition

$$\operatorname{inv}(A) := \left(\underline{K}(A), \ \overline{K}_1^{\operatorname{alg}}(A), \ \operatorname{Aff} T(A)\right)$$

#### THE INVARIANT

#### Definition

$$\operatorname{inv}(A) := \left(\underline{K}(A), \ \overline{K}_1^{\operatorname{alg}}(A), \ \operatorname{Aff} T(A)\right)$$

A compatible triple  $(\underline{\alpha}, \beta, \gamma)$ : inv(A)  $\rightarrow$  inv(E) consists of  $\underline{\alpha} : \underline{K}(A) \rightarrow \underline{K}(E), \quad \beta : \overline{K}_1^{alg}(A) \rightarrow \overline{K}_1^{alg}(E), \quad \gamma : \operatorname{Aff} T(A) \rightarrow \operatorname{Aff} T(E)$ such that

$$\begin{array}{ccc} K_{0}(A) & \stackrel{\rho_{A}}{\longrightarrow} & \operatorname{Aff} T(A) & \stackrel{\operatorname{Th}_{A}}{\longrightarrow} & \overline{K}_{1}^{\operatorname{alg}}(A) & \longrightarrow & K_{1}(A) \\ & & \downarrow^{\alpha_{0}} & & \downarrow^{\gamma} & & \downarrow^{\beta} & & \downarrow^{\alpha_{1}} \\ & & K_{0}(E) & \stackrel{\rho_{E}}{\longrightarrow} & \operatorname{Aff} T(E) & \stackrel{\operatorname{Th}_{E}}{\longrightarrow} & \overline{K}_{1}^{\operatorname{alg}}(E) & \longrightarrow & K_{1}(E) \end{array}$$

commutes.

#### THE INVARIANT

#### Definition

$$\operatorname{inv}(A) := \left(\underline{K}(A), \ \overline{K}_1^{\operatorname{alg}}(A), \ \operatorname{Aff} T(A)\right)$$

A compatible triple  $(\underline{\alpha}, \beta, \gamma)$ : inv(A)  $\rightarrow$  inv(E) consists of  $\underline{\alpha} : \underline{K}(A) \rightarrow \underline{K}(E), \quad \beta : \overline{K}_1^{alg}(A) \rightarrow \overline{K}_1^{alg}(E), \quad \gamma : \operatorname{Aff} T(A) \rightarrow \operatorname{Aff} T(E)$ such that

$$\begin{array}{cccc} K_{0}(A) & \stackrel{\rho_{A}}{\longrightarrow} & \operatorname{Aff} T(A) & \stackrel{\operatorname{Th}_{A}}{\longrightarrow} & \overline{K}_{1}^{\operatorname{alg}}(A) & \longrightarrow & K_{1}(A) \\ & & \downarrow^{\alpha_{0}} & & \downarrow^{\gamma} & & \downarrow^{\beta} & & \downarrow^{\alpha_{1}} \\ & & K_{0}(E) & \stackrel{\rho_{E}}{\longrightarrow} & \operatorname{Aff} T(E) & \stackrel{\operatorname{Th}_{E}}{\longrightarrow} & \overline{K}_{1}^{\operatorname{alg}}(E) & \longrightarrow & K_{1}(E) \end{array}$$

commutes.

 $(\underline{\alpha}, \beta, \gamma)$  is *faithful and amenable* if  $\gamma^*(T(E)) \subseteq T(A)$  consists of faithful amenable traces.

## Theorem (C-Gabe-Schafhauser-Tikuisis-White)

- A : sep., exact, UCT
- B : sep., Z-stable, strict comparison w.r.t. T(B), T(B) ≠ Ø
  & compact
- $(\underline{\alpha}, \beta, \gamma)$ : inv(A)  $\rightarrow$  inv(B) : compatible triple that is faithful and amenable

Then:

- $\exists$  full<sup>†</sup> nuclear \*-hom.  $\varphi : A \rightarrow B$  s.t.  $inv(\varphi) = (\underline{\alpha}, \beta, \gamma);$
- $\cdot$  this  $\phi$  is unique up to approx. unitary equivalence.

## Theorem (C-Gabe-Schafhauser-Tikuisis-White)

- A : sep., exact, UCT
- B : sep., Z-stable, strict comparison w.r.t. T(B), T(B) ≠ Ø
  & compact
- $(\underline{\alpha}, \beta, \gamma)$ : inv(A)  $\rightarrow$  inv(B) : compatible triple that is faithful and amenable

Then:

- $\exists$  full<sup>†</sup> nuclear \*-hom.  $\varphi : A \rightarrow B$  s.t. inv( $\varphi$ ) = ( $\underline{\alpha}, \beta, \gamma$ );
- $\cdot$  this  $\phi$  is unique up to approx. unitary equivalence.
- <sup>†</sup>:  $\varphi(a)$  generates *B* as an ideal  $\forall a \neq 0$ . Wrinkle with units.

## Theorem (C-Gabe-Schafhauser-Tikuisis-White)

- A : sep., exact, UCT
- B : sep., Z-stable, strict comparison w.r.t. T(B), T(B) ≠ Ø
  & compact
- $(\underline{\alpha}, \beta, \gamma)$ : inv(A)  $\rightarrow$  inv(B) : compatible triple that is faithful and amenable

Then:

- $\exists$  full<sup>†</sup> nuclear \*-hom.  $\varphi : A \rightarrow B$  s.t.  $inv(\varphi) = (\underline{\alpha}, \beta, \gamma);$
- $\cdot$  this  $\phi$  is unique up to approx. unitary equivalence.
- <sup>†</sup> :  $\varphi(a)$  generates *B* as an ideal  $\forall a \neq 0$ . Wrinkle with units.

The (unital) C\*-algebras in

 $\left\{ \begin{array}{c} alg's \ satisfying \\ domain \ hyp. \end{array} \right\} \bigcap \left\{ \begin{array}{c} alg's \ satisfying \\ target \ hyp. \end{array} \right\} \bigcap \left\{ \begin{array}{c} A: \ id_A \ satisfies \\ morphism \ hyp. \end{array} \right\}$ 

are precisely those we wanted to classify on first slide.

 $\Rightarrow$  Classification of algebras via inv(-). Can deduce classification of algebras via Ell(-). The (unital) C\*-algebras in

{ alg's satisfying domain hyp. }∩ { alg's satisfying target hyp. }∩ { A : id<sub>A</sub> satisfies morphism hyp. }

are precisely those we wanted to classify on first slide.

⇒ Classification of algebras via inv(−). Can deduce classification of algebras via Ell(−).

Future goal: move more hypotheses (regularity?) to the morphisms, allowing even more general algebras.

# A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

# A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

- $\Gamma$  : amenable group;  $\tau$  : canonical trace on  $C_r^*(\Gamma)$ 
  - Higson-Kasparov:  $\Gamma$  satisfies Baum-Connes.
  - Lück: range of  $K_0(\tau)$  is contained in  $\mathbb{Q} \cong K_0(\mathcal{Q})$ .
  - Tu:  $C_r^*(\Gamma)$  satisfies UCT.

Not too hard to produce compatible triple inv  $(C_r^*(\Gamma)) \to inv(\mathcal{Q})$  from this data.

# A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

 $\Gamma$  : amenable group;  $\tau$  : canonical trace on  $C_r^*(\Gamma)$ 

- Higson-Kasparov: Г satisfies Baum-Connes.
- Lück: range of  $K_0(\tau)$  is contained in  $\mathbb{Q} \cong K_0(\mathcal{Q})$ .
- Tu:  $C_r^*(\Gamma)$  satisfies UCT.

Not too hard to produce compatible triple inv  $(C^*_r(\Gamma)) \to inv(\mathcal{Q})$  from this data.

#### Punchline:

```
\exists \text{ trace-preserving} \\ C_r^*(\Gamma) \hookrightarrow \mathcal{Q} \quad \Leftrightarrow \ \Gamma \text{ is amenable}
```

## A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

 $\Gamma$  : amenable group;  $\tau$  : canonical trace on  $C_r^*(\Gamma)$ 

- Higson-Kasparov:  $\Gamma$  satisfies Baum-Connes.
- Lück: range of  $K_0(\tau)$  is contained in  $\mathbb{Q} \cong K_0(\mathcal{Q})$ .
- Tu:  $C_r^*(\Gamma)$  satisfies UCT.

Not too hard to produce compatible triple inv  $(C^*_r(\Gamma)) \to inv(\mathcal{Q})$  from this data.

### **Punchline:**

 $\exists \text{ trace-preserving} \\ C_r^*(\Gamma) \hookrightarrow \mathcal{Q} \qquad \Leftrightarrow \ \Gamma \text{ is amenable } \Leftrightarrow \qquad \exists \text{ trace-preserving} \\ L\Gamma \hookrightarrow \mathcal{R}$ 

## STRATEGY

Will prove classification of maps  $A \rightarrow B_{\infty}$ .

The trace-kernel ideal is

$$J_B := \{ (x_n) \in B_{\infty} : \lim_{n \to \infty} \|x_n\|_{2,u} = 0 \},\$$

Will prove classification of maps  $A \rightarrow B_{\infty}$ .

The trace-kernel ideal is

$$I_B := \{ (x_n) \in B_\infty : \lim_{n \to \infty} ||x_n||_{2,u} = 0 \},$$
  
where  $||x||_{2,u} = \sup_{\tau \in T(B)} \tau(x^*x)^{1/2}.$ 

Will prove classification of maps  $A \rightarrow B_{\infty}$ .

The trace-kernel ideal is

$$J_B := \{ (x_n) \in B_{\infty} : \lim_{n \to \infty} \|x_n\|_{2,u} = 0 \},$$
  
where  $\|x\|_{2,u} = \sup_{\tau \in T(B)} \tau (x^* x)^{1/2}.$ 

The trace-kernel extension is

$$0 \to J_B \to B_{\infty} \to B^{\infty} \to 0.$$

Will prove classification of maps  $A \rightarrow B_{\infty}$ .

The trace-kernel ideal is

$$J_B := \{ (x_n) \in B_{\infty} : \lim_{n \to \infty} \|x_n\|_{2,u} = 0 \},$$
  
where  $\|x\|_{2,u} = \sup_{\tau \in T(B)} \tau (x^* x)^{1/2}.$ 

The trace-kernel extension is

$$0 \to J_B \to B_\infty \to B^\infty \to 0.$$

Conditions on  $B \rightsquigarrow J_B$  nice enough to employ KK machinery

Will prove classification of maps  $A \rightarrow B_{\infty}$ .

The trace-kernel ideal is

$$J_B := \{ (x_n) \in B_{\infty} : \lim_{n \to \infty} \|x_n\|_{2,u} = 0 \},$$
  
where  $\|x\|_{2,u} = \sup_{\tau \in T(B)} \tau (x^* x)^{1/2}.$ 

The trace-kernel extension is

$$0 \to J_B \to B_\infty \to B^\infty \to 0.$$

Conditions on  $B \rightsquigarrow J_B$  nice enough to employ KK machinery  $\rightsquigarrow B^{\infty}$  behaves like a finite vNa (sort of)

#### APPROXIMATE CLASSIFICATION OF MORPHISMS: MAJOR STEPS

А

## $0 \longrightarrow J_B \xrightarrow{j} B_{\infty} \xrightarrow{q} B^{\infty} \longrightarrow 0$



1. Classify morphisms into  $B^{\infty}$  (von Neumann techniques)



- 1. Classify morphisms into  $B^{\infty}$  (von Neumann techniques)
- 2. Classify lifts of morphisms to  $B_{\infty}$  (Ext, *KK* techniques)



- Classify morphisms into B<sup>∞</sup> (von Neumann techniques)
- 2. Classify lifts of morphisms to  $B_{\infty}$  (Ext, *KK* techniques)
- 3. Deal with KK-theory, exploiting  $J_B$

Theorem (Castillejos-Evington-Tikuisis-White  $+\cdots$ )

Let A: exact; B:  $\mathcal{Z}$ -stable,  $T(B) \neq \emptyset$  & compact,

 $\mathfrak{t}: T(B^{\infty}) \to T_{\text{amenable}}(A)$  continuous affine.

$$\Longrightarrow \exists nuclear *-hom. \ \theta: A \to B^{\infty}$$

s.t. 
$$\tau \circ \theta = \mathfrak{t}(\tau) \quad \forall \ \tau \in T(B^{\infty}).$$

 $\theta$  is unique up to unitary equivalence.

Compare with classifying maps from nuclear C\*-alg's into II<sub>1</sub> factors. In fact: if  $T(B) = \{\tau\}$ ,  $B^{\infty}$  is essentially a vNA ultrapower of  $\pi_{\tau}(B)''$ .

```
Theorem (Existence for lifts)
```

 $\begin{array}{l} \theta \colon A \to B^{\infty} \ full \ nuclear \ ^{*}\text{-hom};\\ \kappa \in \mathsf{KK}(A, B_{\infty}), \quad [q]_{\mathsf{KK}} \kappa = [\theta]_{\mathsf{KK}}\\ \Longrightarrow \exists \ full \ nuclear \ lift \ \varphi \colon A \to B_{\infty} \ of \ \theta\\ \text{ s.t. } \ [\varphi]_{\mathsf{KK}} = \kappa. \end{array}$ 

```
Theorem (Existence for lifts)
```

```
\begin{array}{l} \theta \colon A \to B^{\infty} \ full \ nuclear \ ^{*}\text{-hom};\\ \kappa \in KK(A, B_{\infty}), \quad [q]_{KK}\kappa = [\theta]_{KK}\\ \Longrightarrow \exists \ full \ nuclear \ lift \ \varphi \colon A \to B_{\infty} \ of \ \theta\\ \text{ s.t. } \ [\varphi]_{KK} = \kappa. \end{array}
```

(Very) roughly:

•  $\theta$  determines a pullback extension  $e_{\theta}$  whose class in Ext(A,  $J_B$ ) vanishes.

```
Theorem (Existence for lifts)
```

```
\begin{array}{l} \theta \colon A \to B^{\infty} \ full \ nuclear \ ^{*}\text{-hom};\\ \kappa \in KK(A, B_{\infty}), \quad [q]_{KK}\kappa = [\theta]_{KK}\\ \Longrightarrow \exists \ full \ nuclear \ lift \ \varphi \colon A \to B_{\infty} \ of \ \theta\\ \text{ s.t. } \ [\varphi]_{KK} = \kappa. \end{array}
```

(Very) roughly:

- $\theta$  determines a pullback extension  $e_{\theta}$  whose class in  $Ext(A, J_B)$  vanishes.
- ·  $[e_{\theta}] = 0 \implies e_{\theta} \oplus (\text{trivial extension}) ≈ a \text{ split extension}.$

```
Theorem (Existence for lifts)
```

```
\begin{array}{l} \theta \colon A \to B^{\infty} \mbox{ full nuclear *-hom;} \\ \kappa \in KK(A, B_{\infty}), \ \ [q]_{KK} \kappa = [\theta]_{KK} \\ \Longrightarrow \exists \mbox{ full nuclear lift } \varphi \colon A \to B_{\infty} \mbox{ of } \theta \\ s.t. \ [\varphi]_{KK} = \kappa. \end{array}
```

(Very) roughly:

- $\theta$  determines a pullback extension  $e_{\theta}$  whose class in  $Ext(A, J_B)$  vanishes.
- $\cdot \ [e_{\theta}] = 0 \implies e_{\theta} \oplus (trivial extension) \approx a \text{ split extension}.$
- Weyl-von Neumann-Voiculescu type absorption theorems  $\implies e_{\theta} \oplus (\text{trivial extension}) \approx e_{\theta}.$

What if we have two (nuclear) lifts  $\varphi$  and  $\psi$  of  $\theta$ ?



### Under these hypotheses:

- get class  $[\varphi, \psi] \in KK(A, J_B)$
- +  $[ \varphi, \psi ]$  determines when  $\varphi, \psi$  are approx. unitarily equiv.

Think of Voiculescu's Theorem:



If  $\varphi, \psi$  are "admissible" (faithful, nondegenerate, and  $\varphi(A) \cap \mathcal{K} = \{0\} = \psi(A) \cap \mathcal{K}$ ), then  $\varphi \approx_u \psi$ .

Think of Voiculescu's Theorem:



If  $\varphi, \psi$  are "admissible" (faithful, nondegenerate, and  $\varphi(A) \cap \mathcal{K} = \{0\} = \psi(A) \cap \mathcal{K}$ ), then  $\varphi \approx_u \psi$ .

More can be said:

Theorem (Dadarlat-Eilers '01)

Suppose:  $\varphi, \psi \colon A \to \mathcal{B}(\mathcal{H})$  are admissible lifts of  $\theta$ .

Then:

 $[\phi,\psi]=0\in \textit{KK}(A,\mathcal{K}) \implies \phi \approx_u \psi \text{ via unitaries in } \mathcal{K}+\mathbb{C}\mathbf{1}_{\mathcal{H}}\,.$ 



## Theorem (Uniqueness for lifts; CGSTW)

- A: sep. exact;
- B: *Z*-stable, strict comparison w.r.t. T(B),  $T(B) \neq \emptyset$  & cpt;
- $\varphi, \psi$ : unitizably full, nuclear lifts of  $\theta$ .

 $[\varphi, \psi] = 0 \in KK(A, J_B) \implies \varphi \approx_u \psi \text{ via unitaries in } \widetilde{J}_B.$ 

## Consider maps

$$\begin{array}{c} A \\ \psi \downarrow \downarrow \varphi \\ 0 \longrightarrow J_B \xrightarrow{j} B_{\infty} \xrightarrow{q} B^{\infty} \longrightarrow 0 \end{array}$$

agreeing modulo J<sub>B</sub>.

Solutions to lifting problems were encoded in certain KK classes. Want to compute this information in terms inv(-).

For instance, can inv detect when  $[\varphi, \psi] \in KK(A, J_B)$  vanishes?

## $\exists$ morphism

$$j_* \colon KK(A, J_B) \to \operatorname{Hom}_{\Lambda}\left(\underline{K}(A), \underline{K}(B_{\infty})\right)$$
$$[\varphi, \psi] \mapsto \underline{K}(\varphi) - \underline{K}(\psi)$$

induced by  $j: J_B \to B_\infty$ .

∃ morphism

$$j_* \colon KK(A, J_B) \to \operatorname{Hom}_{\Lambda} \left( \underline{K}(A), \underline{K}(B_{\infty}) \right)$$
$$[\varphi, \psi] \mapsto \underline{K}(\varphi) - \underline{K}(\psi)$$

induced by  $j: J_B \to B_{\infty}$ .

 $\underline{K}(\varphi) = \underline{K}(\psi)$  doesn't guarantee  $[\varphi, \psi] = 0$ .

### Subtle obstruction:

Even if  $\varphi(u) \sim_h \psi(u)$  is true for  $u \in U(A)$ , the path  $\xi$  connecting them might have nonzero "winding number".

∃ morphism

$$j_* \colon KK(A, J_B) \to \operatorname{Hom}_{\Lambda} \left( \underline{K}(A), \underline{K}(B_{\infty}) \right)$$
$$[\varphi, \psi] \mapsto \underline{K}(\varphi) - \underline{K}(\psi)$$

induced by  $j: J_B \to B_\infty$ .

 $\underline{K}(\varphi) = \underline{K}(\psi)$  doesn't guarantee  $[\varphi, \psi] = 0$ .

### Subtle obstruction:

Even if  $\varphi(u) \sim_h \psi(u)$  is true for  $u \in U(A)$ , the path  $\xi$  connecting them might have nonzero "winding number".

 $\rightsquigarrow$  rotation map  $R([\varphi, \psi])$ ; (roughly) assigns the function

$$\tau \mapsto \frac{1}{2\pi i} \int_0^1 \tau \left( \frac{d\xi(t)}{dt} \xi(t)^{-1} \right) dt$$

to  $[u] \in K_1(A)$ . This is an element of Aff  $T(B_{\infty})$ .

Want to encode this additional obstruction to  $[\varphi, \psi] = 0$  using  $\overline{K}_1^{alg}$ .

*Idea:* use Thomsen's map

$$\operatorname{Aff} T(B_{\infty}) \to \overline{K}_{1}^{\operatorname{alg}}(B_{\infty})$$

which, given  $h = h^* \in B_{\infty}$ , maps  $\hat{h}$  to  $[e^{2\pi i h}]_{alg}$ .

Want to encode this additional obstruction to  $[\varphi, \psi] = 0$  using  $\overline{K}_1^{alg}$ .

Idea: use Thomsen's map

$$\operatorname{Aff} T(B_{\infty}) \to \overline{K}_{1}^{\operatorname{alg}}(B_{\infty})$$

which, given  $h = h^* \in B_{\infty}$ , maps  $\hat{h}$  to  $[e^{2\pi i h}]_{alg}$ .

### Punchline

Assuming  $\underline{K}(\varphi) = \underline{K}(\psi)$ ,

 $\overline{K}_1^{\text{alg}}(\varphi) - \overline{K}_1^{\text{alg}}(\psi) = 0 \quad \Longrightarrow \quad R\big([\varphi, \psi]\big) = 0 \quad \Longrightarrow \quad [\varphi, \psi] = 0.$ 

This let us access the classification theorem for lifts.

### SUMMARY





Can use this to classify algebras

... even in the non-unital setting.

### Theorem

Suppose A and B are non-unital, simple, separable, nuclear, *Z*-stable C\*-algebras satisfying the UCT.

Any isomorphism  $Ell(A) \xrightarrow{\sim} Ell(B)$  lifts to an isomorphism  $A \xrightarrow{\sim} B$ .

## THANK YOU!