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INTRODUCTION



THE CLASSIFICATION THEOREM

Theorem (“Many hands”)

C*-algebras that are unital, simple, separable, nuclear,
regular, and satisfy the UCT, are classified by K-theory and
traces.

- C*-analog of the classification of injective von Neumann
factors: Murray-von Neumann, Connes, Haagerup.

- No traces: Kirchberg-Phillips (1990s).
- We focus only on the case T(A) # @.
- Classifying invariant:

ELL(A) = (KO(A), Malo, Ki(A), T(A), T(A)xKo(A) — R)
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Setup: G, a countable discrete group, acting on X, a compact
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AN EXAMPLE: C(X) x G

Setup: G, a countable discrete group, acting on X, a compact
metric space.
When does C(X) x G satisfy the hypotheses?
CX)xGis...
.. unital, since X is compact;
..simple, if the action is free and minimal;
..separable, since G is countable and X is metrizable;
..nuclear, if G is amenable;
..in the UCT class, if G is amenable;
, iIf X is finite dimensional and G is f.g. nilpotent.
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- dimpyc A: noncommutative analog of covering dimension
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REGULARITY

Finite nuclear dimension (Winter-Zacharias)
- dimpyc A: noncommutative analog of covering dimension
- dimpyc C(X) = dim X
- range of Ell(—) exhausted by C*-algebras with dimpyc < oo

Z-stability: AXA® Z
- Jiang-Su algebra Z: co-dim’l analog of C.

- Z ~kk C; has unique trace.
- El(A) = Ell(A® 2)



Theorem (Castillejos-Evington-Tikuisis-White-Winter)
For A is a unital, simple, separable, nuclear, nonelementary,

dimpucA< oo & AXARZ.

Comments:

- “=" s due to Winter

- Can remove “unital” from statement: Castillejos-Evington,
Tikuisis.

- Conjecturally equivalent to a third condition:
strict comparison. (True under mild trace hypotheses.)

- Proof developed important technique for handling
complicated trace spaces.



THE ORIGINAL ROAD TO CLASSIFICATION (~2017)

Impossible to summarize decades of work in a slide.
Some recent components:

Classification of “model” algebras

- Gong-Lin-Niu "15: classified C*-algebras with a certain
internal tracial approximation structure.

- The class exhausts range of ELl(—).

Realizing the approximations
- Elliott-Gong-Lin-Niu "15: abstract conditions on a
C*-algebra = concrete tracial approximations of GLN.

- Tikuisis-White-Winter 17: the abstract conditions are the
ones stated in the classification theorem.



A DIFFERENT APPROACH

We develop an alternate route to classification: beginning with
von Neumann algebraic techniques inspired by work of Connes
and Haagerup, we extend the KK-theoretic techniques recently
developed by Schafhauser to prove classification theorems in
an abstract setting.



A DIFFERENT APPROACH

We develop an alternate route to classification: beginning with
von Neumann algebraic techniques inspired by work of Connes
and Haagerup, we extend the KK-theoretic techniques recently
developed by Schafhauser to prove classification theorems in
an abstract setting.

We will (mostly) ignore the difficulties that arise from
non-separability or the lack of a unit.



CLASSIFYING MORPHISMS & ALGEBRAS



EXISTENCE AND UNIQUENESS INTO Il; FACTORS

Theorem (Connes '76)
Injective von Neumann Algebras are AFD.

Corollary
A: nuclear C*-algebra; M: Iy factor.

1. (existence)

TeET(A) = Ix-homp:A—>Mst Tyop =T.
2. (uniqueness)

Q,P: A— Mx-hom’sst. Tyo@ =Tyo W

— oryy (in]-[2)



CLASSIFICATION OF MORPHISMS

Rough scheme

Produce invariant inv(—) s.t.
(with abstract hypotheses on A, B):

- (existence)

a: inv(A) = inv(B) = Jp: A— Bst inv(p) =q;
- (uniqueness)

Q,p: A= Bandinv(g) =inv(p) = @ =y Y.

Intertwining: inv(A) = inv(B) = A= B.



CLASSIFICATION OF MORPHISMS

Rough scheme

Produce invariant inv(—) s.t.
(with abstract hypotheses on A, B):

- (existence)

a: inv(A) = inv(B) = Jp: A— Bst inv(p) =q;
- (uniqueness)

Q,p: A= Bandinv(g) =inv(p) = @ =y Y.

Intertwining: inv(A) = inv(B) = A= B.

inv(—) will be more complicated than Ell(—).

Also want:
EWL(A) = Ell(B) yields inv(A) = inv(B).



ONE INGREDIENT: TOTAL K-THEORY

Definition
K(A) = @2, Ko(A; Z/nZ) ® Ki(A; Z/nZ)
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ONE INGREDIENT: TOTAL K-THEORY

Definition
K(A) = @5, Ko(A; Z/nZ) & Ki(A; Z/nZ)

Can think of Ki(A;Z/nZ) as Kj(A ® Opi1).

Slogan

Can check “closeness” of KK(p) and KK(y) by checking that
K(p) and K(w) agree on large finite subsets of K(A).
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Thomsen-Nielsen (early 90s): different proof of Elliott's
classification of simple unital AT algebras. Need refined inv.
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ANOTHER INGREDIENT OF INV(—): “ALGEBRAIC” K;

Thomsen-Nielsen (early 90s): different proof of Elliott’s
classification of simple unital AT algebras. Need refined inv.

Definition
RiS(A) := U(A)/CU (A)

CU>(A) is the closure of the commutator subgroup of U*(A).

E?lg(A) came up in Thomsen'’s work on the role of the
relationship between and K-theory and traces in classification
theory.

Has seen lots of use in classification (e.g. in GLN).

10



THE INVARIANT

Definition

inv(A) = (K(A), K(a), AffT(A))
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Definition

inv(A) = (K(A), K(a), AffT(A))

& (a,B,y): inv(A) — inv(E) consists of
@ K(A) = K(E). B: K S(A) = Ki%(E), v AFFT(A) — AFFT(E)
such that

Ko(A) —2 AFFT(A) — ™5 K%(A) —— Ki(A)

lao l\/ lB law
Ko(E) —P5 AFFT(E) 55 K28(F) —— Ki(E)

commutes.

n



THE INVARIANT

Definition

inv(A) = (K(A), K(a), AffT(A))

A compatible triple (a,B,y): inv(A) — inv(E) consists of
a: K(A) > K(E),  B: Ky S(A) > Ki5(E), v: ATT(A) — ATFTI(E)
such that

Ko(A) —2s AFFT(A) —4 R2S(A) —— Ky(A)

lao l\/ lB law

Ko(E) —P5 AFFT(E) 55 K28(F) —— Ki(E)
commutes.

(a,B,y) is if y*(T(E)) C T(A) consists of

11
faithful amenable traces.



CLASSIFICATION OF MORPHISMS

Theorem (C-Gabe-Schafhauser-Tikuisis-White)

- A:sep., exact, UCT

- B :sep., Z-stable, strict comparison w.rt. T(B), T(B) # @
& compact

- (a,B,y): inv(A) — inv(B) : compatible triple that is faithful
and amenable

Then:

- Afull™ nuclear *-hom. @: A — B st. inv(p) = (a, B, Y);

- this  is unique up to approx. unitary equivalence.
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CLASSIFICATION OF MORPHISMS

Theorem (C-Gabe-Schafhauser-Tikuisis-White)

- A:sep., exact, UCT

- B :sep., Z-stable, strict comparison w.rt. T(B), T(B) # @
& compact

- (a,B,y): inv(A) — inv(B) : compatible triple that is faithful
and amenable

Then:

- Afull™ nuclear *-hom. @: A — B st. inv(p) = (a, B, Y);

- this  is unique up to approx. unitary equivalence.

T ((a) generates B as an ideal Ya # 0. Wrinkle with units.
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CLASSIFYING ALGEBRAS

The (unital) C*-algebras in

{ alg’s satisfying } ﬂ{ alg’s satisfying } m { A :id, satisfies }
domain hyp. target hyp. morphism hyp.
are precisely those we wanted to classify on first slide.

= Classification of algebras via inv(—).
Can deduce classification of algebras via ELl(—).
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CLASSIFYING ALGEBRAS

The (unital) C*-algebras in

{ alg’s satisfying } ﬂ{ alg’s satisfying } ﬂ { A :id, satisfies }
domain hyp. target hyp. morphism hyp.
are precisely those we wanted to classify on first slide.

= Classification of algebras via inv(—).
Can deduce classification of algebras via ELl(—).

Future goal: move more hypotheses (regularity?) to the
morphisms, allowing even more general algebras.

13
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A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

I : amenable group; T :canonical trace on C;(I)

- Higson-Kasparov: I satisfies Baum-Connes.

- Luck: range of Ko(T) is contained in Q = Ko(Q).

- Tu: C5(T) satisfies UCT.
Not too hard to produce compatible triple inv (C;(I)) — inv(Q)
from this data.

Punchline:

3 trace-preservin . 5 i
- p g & s amenable < d trace-preserving
Gl — Q LFr >R

14



STRATEGY




THE TRACE-KERNEL EXTENSION

Define By := ¢>°B/coB.
Will prove classification of maps A — Ba.
The trace-kernel ideal is

Jg:= {(Xn) € Beo : nango IXnll2,u = 0},
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THE TRACE-KERNEL EXTENSION

Define By := ¢>°B/coB.
Will prove classification of maps A — Ba.
The trace-kernel ideal is
Js := {(xn) € Boo : lim |Xnfl2u = 0},

where ||x|lo.u = sup T(x*x)"/2.
TET(B)

The trace-kernel extension is

0 —Jg— Bs — B — 0.

Conditions on B ~~ Jg nice enough to employ KK machinery
~ B> behaves like a finite vNa (sort of)
15
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APPROXIMATE CLASSIFICATION OF MORPHISMS: MAJOR STEPS
A 1
' lZ\
i q
Boo

0 s B* —— 0

1. Classify morphisms into B>
(von Neumann techniques)

2. Classify lifts of morphisms to B,
(Ext, KK techniques)

3. Deal with KK-theory, exploiting /g



1. CLASSIFYING MAPS INTO B*°

Theorem (Castillejos-Evington-Tikuisis-White + - - )
Let A: exact; B: Z-stable, T(B) # @ & compact,
t: T(B>*) — Tamenable(A) continuous affine.
— d nuclear *-hom. 6: A — B>
St ToO=+t(1) VTeT(B>).

6 is unigue up to unitary equivalence.

Compare with classifying maps from nuclear C*-alg’s
into Il factors.

In fact: If T(B) = {1}, B> Is essentially a vNA ultrapower of
mr(B)".



2. CLASSIFYING LIFTS (A GLIMPSE)

Setup: A: sep. exact; B: Z-stable, strict comp. w.rt. T(B),
T(B) # @ & compact
Theorem (Existence for lifts)
6: A — B> full nuclear *~hom;
K € KK(A, Bso),  [q]kkk = [B]kk
= 3 full nuclear lift ¢: A — By, 0f 6
st [©]kk = K.
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2. CLASSIFYING LIFTS (A GLIMPSE)

Setup: A: sep. exact; B: Z-stable, strict comp. w.rt. T(B),
T(B) # @ & compact

Theorem (Existence for lifts)
6: A — B> full nuclear *~hom;
K € KK(A, Bso),  [q]kkk = [B]kk
= 3 full nuclear lift ¢: A — By, 0f 6
st [©]kk = K.

(Very) roughly:

- 8 determines a pullback extension eg whose class in
Ext(A,Jg) vanishes.

- [eg] =0 = egyd(trivial extension) ~ a split extension.

- Weyl-von Neumann-Voiculescu type theorems
— egP(trivial extension) ~ eg.



What if we have two (nuclear) lifts ¢ and w of 6?

A 6
oo N\
0 IB Boo B*® — 3 0

Under these hypotheses:
- get class [, ] € KK(A, Jg)

- [, w] determines when @, @ are approx. unitarily equiv.

19



Think of Voiculescu’s Theorem:

A 0
Al N\
(H) —— QH) ——

O — K —— B

If @, w are “admissible” (faithful, nondegenerate, and
P(A)NK = {0} = w(A)NK), then © ~, .

0

20



Think of Voiculescu’s Theorem:

u\

0 — K —— B(H — 0

If @, w are “admissible” (faithful, nondegenerate, and
P(A)NK = {0} = w(A) NK), then ¢ =~ Y.

More can be said:

Theorem (Dadarlat-Eilers '01)

Suppose: @, p: A — B(H) are admissible lifts of 6.

Then:

[0, ] =0 € KK(A,K) = @ =~y @ via unitaries in KK+ Cly .

20



u\

0 JB B* —— 0

Theorem (Uniqueness for lifts; CGSTW)
- A: sep. exact;
- B: Z-stable, strict comparison w.rt. T(B), T(B) # @ & cpt;
-, Y: unitizably full, nuclear lifts of 6.

[0, ] =0 € KK(A,Jp) — © ~, Y via unitaries in Jg .

21



3. FROM KK TO inv: ROTATION MAPS

Consider maps

A

ol |0

0 Jg —— By, —1 3 B® — 4 0

agreeing modulo Jg.

Solutions to lifting problems were encoded in certain KK
classes. Want to compute this information in terms inv(—).

For instance, can inv detect when [, ] € KK(A, Jg) vanishes?

22



3 morphism
j.: KK(A, Jg) — Homy (K(A),K(Boo))

[0, w] = K(p) — K(w)
induced by j: /g — Bso.

23



3 morphism
j.: KK(A, Jg) — Homy (K(A),K(Boo)>

[0, w] = K(p) — K(w)
induced by j: /g — Bso.

K(p) = K(p) doesn’'t guarantee [, w] = 0.

Subtle obstruction:
Even if @(u) ~p w(u) is true for u € U(A), the path ¢

connecting them might have nonzero “winding number”.
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3 morphism
j.: KK(A, Jg) — Homy (K(A),K(Bm))

[0, W] = K() — K(w)
induced by j: /g — Bso.
K(p) = K(p) doesn’t guarantee [, ] = 0.

Subtle obstruction:
Even if @(u) ~p w(u) is true for u € U(A), the path ¢

connecting them might have nonzero “winding number”.

~ rotation map R([¢, w]); (roughly) assigns the function

1 ! dé(t) _
o [ T(Cgr s o

to [u] € Ky(A). This is an element of Aff T(Bs).

23



Want to encode this additional obstruction to [p, ] = 0
using K-8,
Idea: use Thomsen’s map

AFFT(Boo) — K 8(Boo)

which, given h = h* € Bu, maps h to [e2MM,q.

2%



Want to encode this additional obstruction to [p, ] = 0
using K-8,
Idea: use Thomsen’s map

AFFT(Boo) — K 8(Boo)

which, given h = h* € Bu, maps h to [e2MM,q.

Punchline
Assuming K(@) = K(y),

K0)-Kw) =0 — R(p,y])=0 — [p,y]=0.

This let us access the classification theorem for lifts.

24



SUMMARY




Using inv(—) can provide 3 and ! for *~-hom'’s

sep., simple,
nuclear, UCT

—

sep., simple, nuclear,
finite, Z-stable

(can do this much more generally!)
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Using inv(—) can provide 3 and ! for *~-hom'’s

sep., simple, N sep., simple, nuclear,
nuclear, UCT finite, Z-stable

(can do this much more generally!)

Can use this to classify algebras
. even in the non-unital setting.

Theorem

Suppose A and B are non-unital, simple, separable, nuclear,
Z-stable C*-algebras satisfying the UCT.

Any isomorphism Ell(A) = EIl(B) lifts to an isomorphism
A= B



THANK YOU!
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